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We consider a resonant triad of gravity-capillary waves, riding on top of a much 
longer gravity wave. The long-wave phase is assumed to vary on the same scale 
as the slow modulation of the short waves. Envelope equations are first deduced 
in the Lagrangian description. By perturbation analysis for a weak long wave, we 
then find that the long wave can resonate the natural modulation oscillations of the 
triad envelope, giving rise to various bifurcations in the Poincare map. Numerical 
integration for a stronger long wave reveals that chaos can emerge from these 
bifurcations. The bifurcation criterion of Chen & Saffman (1979) for collinear 
Wilton’s ripples is generalized to arbitrary non-collinear triads, and is found to play 
an important role as a criterion for the onset of chaotic behaviour. 

1. Introduction 
In nature, gravity-capillary waves often appear in short-crested form. Our purpose 

here is to study the evolution of three resonating gravity-capillary waves propagating 
in different directions on the surface of a long gravity wave. This is important both 
for a fuller understanding of sea-surface dynamics and to facilitate interpretation of 
remote sensing data. 

The theoretical study of resonant interactions between gravity-capillary waves was 
initiated by Harrison (1909) and Wilton (1915), who found that a progressive wave 
can excite its second harmonic through nonlinear interactions. The resulting waves 
are now known as Wilton’s ripples. Extending the seminal work by Phillips (1960), 
who showed that pure gravity waves can resonate one another in quartets at the third 
order in wave steepness, McGoldrick (1965) showed that gravity-capillary waves can 
interact in triplets at the second order. He derived the nonlinear evolution equations 
under the assumption that the wave envelopes are uniform in space and subject to 
temporal modulation only, and found the analytical solution for waves modulated in 
amplitude, but not in phase. Simmons (1969) generalized the evolution equations to 
account for modulation of amplitude and phase, in time and space. Limiting to time 
evolution only, Simmons solved the quadratic evolution equations for three different 
waves in perfect resonance. Case & Chiu (1977) considered three-wave interaction 
where each wave consists of two components propagating in opposite directions. They 
found no coupling at the second order between the oppositely propagating waves. 
A general Hamiltonian account of triad resonance was given by Meiss & Watson 
(1978). 

Bifurcations of uniform and steady wavetrains were studied by Chen & Saffman 
(1979). They showed that steady Wilton’s ripples are associated with a period-doubling 
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bifurcation, through which a pure steady second harmonic wave can become a steady 
combination wave of the first and second harmonics. It was later shown independently 
by Reeder & Shinbrot (1981) and Ma (1982) that the same bifurcation can also occur 
for the special case of triad resonance in three dimensions when the two longer 
waves have the same amplitude and the wavenumber vectors form an isosceles 
triangle. Janssen (1986, 1987) showed that such period-doubling bifurcations may be 
facilitated by wind. Jones (1992) derived cubic nonlinear equations to investigate the 
modulational stability of Wilton’s ripples of permanent form. Christodoulides & Dias 
(1994) considered the bifurcations of cubically nonlinear steady Wilton’s ripples on 
the interface between two fluids of different densities. 

The simultaneous evolution in time and space of the conservative three-wave 
equations has been solved analytically, see Kaup (1981) and references cited therein. 
For certain limiting cases, analytical solutions to the non-conservative three-wave 
equations are also known (Craik 1986). In general, non-conservative triad interaction 
can lead to chaos (Vyshkind & Rabinovich 1976; Wersinger, Finn & Ott 1980). 

On the experimental side, collinear Wilton’s ripples were verified by McGoldrick 
(1970). Banerjee & Korpel (1982) studied triads where the wavenumber vectors form 
an isosceles triangle. Recent experiments on more general configurations of triads 
have been described in a series of papers by Henderson & Hammack (1987), Perlin, 
Henderson & Hammack (1990) and Perlin & Hammack (1991), and surveyed by 
Henderson & Hammack (1993). They showed how a stability criterion of Hasselmann 
(1967), together with ubiquitous noise in their experiments, are important in the 
selection process that determines which discrete triads may emerge. Experiments on 
steep Wilton’s ripples and higher-order harmonic resonances were performed by Perlin 
& Ting (1992), who compared the measured wave profiles with fully nonlinear theories 
and found good agreement. Field observations of three-wave resonant interactions 
under the influence of wind were reported by Strizhkin & Raletnev (1986). 

Modern theories on the evolution of short waves on a long wave were begun by 
Longuet-Higgins & Stewart (1960), who discussed how the former steepen near the 
crests, and flatten near the troughs of the latter. Most of the existing works are 
concerned with the linear evolution of a single train of gravity or gravityxapillary 
waves, over a relatively short time or distance which is comparable with a long- 
wave period or wavelength. Phillips (1981) studied the evolution of a short linear 
gravity-capillary wave on a prescribed long wave, in an orthogonal coordinate system 
defined by the long-wave surface. Longuet-Higgins (1987) considered the effects of a 
steep long wave which was calculated numerically. The linear evolution of gravity- 
capillary waves on steep gravity waves was considered by Grimshaw (1988) by using 
non-orthogonal curvilinear coordinates. A Zhakharov spectral formulation for long- 
wave/short-wave interaction was presented by Craik (1988). A general Hamiltonian 
account of the linear evolution of short waves on a long wave was given by Henyey 
et al. (1988). Shyu & Phillips (1990) investigated the possibility of blocking of short 
waves by the variable orbital velocity of a long wave. 

The nonlinear evolution of a short gravity wave on a long gravity wave was 
investigated by Zhang & Melville (1990) by using an orthogonal curvilinear coordinate 
system. Subsequently, Zhang & Melville (1992) used this theory to investigate the 
evolution of a narrow-banded wavetrain on top of a long wave. Naciri & Mei (1992) 
used a Lagrangian formulation through which a short gravity wave was described 
relative to the long-wave particle displacement. They let the long wave be a rotational 
Gerstner wave of finite slope. It was found that the long wave enlarges the domain of 
Benjamin-Feir instability in the parametric space. Naciri & Mei (1992) further found 
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that the post-instability evolution is chaotic, therefore suggesting that the irregular 
appearance of the sea surface need not be solely due to the turbulent eddies in 
wind, but is inherent in the deterministic nonlinear mechanics of the water surface. 
Woodruff & Messiter (1994) recently derived a theory for short capillary waves riding 
on a long gravity wave of finite steepness. 

In this paper, we are interested in the long-time evolution of short surface waves. 
For a meaningful theoretical analysis it is important to assess the role of viscous 
damping. Let us first show that for a fresh and clean surface without the effects of 
aging or contamination, viscous damping occurs over a timescale much longer than 
the time for quadratic interaction. At 20°C the following values for surface tension, 
density, gravitational acceleration and viscosity can be taken : 

T = 7 2 . 8 ~ 1 0 - ~  Nm-', p=9,98xld  kgm-3, g=9.80 msd2, v=l.00x10-6 m2s-l. 

We define the characteristic wavenumber and frequency by equating the gravity and 
capillary terms in the dispersion relation, i.e. 

For a clean water surface, the ratio of a wave period to the damping time is 

1 
- 2 ~ ( k ' ) ~  = 0.0032. 
W* 

The ratio of a wave period to the timescale of resonant interaction is comparable 
to the wave steepness. If we let the steepness be of order E = O(O.05)-O(O.l), then 
viscous damping is clearly unimportant for a time range compatible with quadratic 
nonlinear interaction. Hence damping will be ignored in this study even for the 
examination of the long-time effect of nonlinearity. However, it is equally clear that 
viscous effects cannot be neglected for a cubically nonlinear theory. If on the other 
hand contamination is so strong that the surface behaves as an inextensible film, the 
non-dimensional characteristic damping rate can be found to be 

112 1 k' 
-- (T) = 0.014. 
W* 2 

Viscosity would then be much more important in the study of the long-time behaviour. 
Based on these estimates, we shall here assume that the water surface is clean, and 
consider inviscid triad interaction up to quadratic nonlinear order, with the effect of 
the long wave balanced at the second order. 

Assuming that the amplitude of the long wave is much greater than the typical 
wavelength of the short waves, we employ in $2 the Lagrangian description (Naciri & 
Mei 1992) in order to simplify the consideration of the free surface. Multiple-scales 
perturbation expansions are introduced in $3. Equations for the envelopes of the 
interacting short waves on top of a uniform long wave are deduced in §4. The 
reduced dynamical system for time evolution is introduced in $5. To facilitate the 
discussion of the influence of the long wave, we first summarize the well-known 
analytical solution for a resonant triad without a long wave in $6. As a result, we 
generalize the bifurcation criterion of Chen & Saffman (1979), Reeder & Shinbrot 
(1981) and Ma (1982) to arbitrary three-wave configurations. For a weak long wave, 
approximate analysis is then pursued in $7 to reveal bifurcations due to modulational 
resonance, by which the natural envelope oscillations of the triad are resonated by 



348 K. Trulsen and C.C. Mei 

the long wave. Confirmation of the analytical results by direct numerical integration 
of the evolution equations, is also shown. Finally, numerical results for a relatively 
strong long wave are presented in 58. Details of the approach to Hamiltonian chaos 
are shown. 

2. Governing Lagrangian equations 
We adopt the Lagrangian coordinates in Naciri & Mei (1992) and first summarize 

the equations governing irrotational deep-water waves on the surface of an inviscid, 
incompressible fluid. The instantaneous horizontal and vertical position of a fluid 
particle, X = ( X ,  Y )  and Z is parameterized by the reference coordinates u = (a, b)  
and c and time t. Continuity of an incompressible fluid requires that the following 
Jacobian is independent of time: 

The vorticity components are required to be zero, 

Rx = (Qy.,Qy) = 0, Q;22 = 0. (2.2a, b) 

For deep water waves, irrotationality in the two horizontal directions implies 
irrotationality in the vertical direction. This follows from the vector identity V - V  x u = 
0. If a x  = 0, then Qz is independent of Z .  Since the fluid velocity u vanishes at 
great depth ( Z  + -a), it follows that Qz vanishes everywhere. As a result, (2.1) and 
(2.2a) are sufficient to determine the three unknowns X, Y ,  Z.  

On the free surface, designated by c = 0, we have 

1 
= --v,,p, 

a2y a t2 ( T t Z  ) p 
a2x 

a t 2  
VaX- + VaY - + VaZ 7 + g 

where p is the water pressure, p the water density, g the acceleration due to gravity 
and V. = (d/aa,d/db). In terms of the vertical displacement of the free surface 
[ = Z ( a ,  0, t) ,  the water pressure at the free surface is given by 

Here patm is the atmospheric pressure, T the surface tension between water and air 
and Vx = (d /aX,a /dY) .  The atmospheric pressure is taken to be constant, 

V.patm = 0 at c = 0. (2 .5)  

In the following, we set y = T / p .  

to the reference coordinates (a, c )  as follows : 
It is convenient to introduce the Lagrangan displacements x = (x ,y )  and z relative 

x = a + x(u, c,  t ) ,  z = c + z(a, c,  t ) .  (2.6) 

In summary, the unknown displacements x, y, z can be solved from the continuity 
condition (2.1) and the irrotationality condition (2.2a), subject to the dynamic bound- 
ary condition (2.3b(2.5). The resulting equations in terms of x, y, z are lengthy, and 
are given in the Appendix. 
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3.  Order assumptions and multiple-scale expansions 
We shall assume that the water depth is much greater than the length of the 

long wave and that both short and long waves have small steepnesses. Let the 
physical wavenumber, frequency and amplitude of the short wave be denoted by 
k, w, A, respectively, and the corresponding quantities for the long wave by K, SZ, B. 
The following ordering assumptions are assumed with a view to yielding simple and 
interesting asymptotic results: 
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kA = O ( E ) ,  K B  = O ( F ) ,  K / k  = O(e2) ,  s 2 / 0  = O(E),  (3.1) 

where E 4 1. The last two are dictated by the anticipated dispersion relations 

SZ2 = gK and o2 = g k  + y k 3 .  (3.2~1, b)  

Under these scaling assumptions, 

SZB = O ( w / k )  and kB = O( l / c ) ,  (3-3) 

meaning, respectively, that the orbital velocity of the long wave is comparable in 
order of magnitude to the phase and group velocities of the short waves, and that 
the short wavelength is much smaller than the long-wave amplitude. 

We assume that the long wave propagates in the x-direction, while the resonating 
short waves propagate in any horizontal direction. As a consequence, the long wave 
will have only x and z components, which are independent of the reference coordinate 
b. 

We let the basic reference lengthscales and timescales be defined by k-' and w-' 
of the short wave. In view of the scale contrast between short and long waves and 
the anticipated growth due to resonance, we introduce a cascade of slow coordinates 

(aj,cj, ti) = €'(a, c, t )  for j = 1,2,3, .  . . (3-4) 

where aj = (aj ,bj) .  From (3.1) the amplitudes of the short and long waves are 
O(e /k )  and O ( l / e k )  respectively, and hence the particle displacement field can to the 
leading order be decomposed into long-wave components at O(E-'), and short-wave 
components at O(E).  The lowest order at which the short waves can influence the 
long wave is O(KB(kA)2). On the other hand, triad resonance of short waves is 
known to reach maturity at O(kA)2 over the timescale t l  = O(1). Self-modulation of 
the long wave will occur by nonlinear interaction at the third order over the much 
longer time and length scales a3,c3, t2. The short waves will be modulated by both 
nonlinear self-interaction and by the long wave. Self-interaction must be described by 
coordinates u ~ , c l , t l .  Modulation of the short waves by the long wave will of course 
be over the scales of the long wave. 

In this paper we shall only examine the effect of a long wave on the second-order 
interactions of the short waves, over the timescale of triad resonance t l .  Hence the 
long wave will not be affected by the short waves and can be described by a linearized 
theory. Thus we expand the short-wave displacements to the second order, while we 
only need the long-wave displacement to the leading order. The resulting expansions, 
with both long and short-wave contributions are 
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The long-wave contributions at O ( d )  depend on a2, c2, t l .  The short-wave contribu- 
tions at O(e) and O(e2)  depend on a, al, c, c1, t ,  t l .  

continuity : 
The leading-order equations for the long wave are 

irrotationality : 

free surface condition: 

These equations are satisfied by the basic linear wave solution 

i 
2 

x(-l) = .J-1.0) + - B ~ ~ ( K ~ ~ - Q ~ I ) + K c ~  + C.C., 

z ( - l )  = z(-l,O) + i  1 Bei(Kaz-Qfl)+Kc2 + C.C., 

(3 .9~)  

(3.9b) 

where B is the long-wave amplitude and B and K are related by the dispersion 
relation (3.2a), and C.C. denotes complex conjugate. The Stokes drift of the long wave 
(x(-llo), z ( - ~ * O ) )  is not needed in the subsequent analysis. 

The first- and second-order equations for the short waves, corresponding to m = 1 
and m = 2, respectively, are 
continuity: 

irrotationality : 

free surface condition : 

(3.10) 

(3.11) 

(3.12) 

The right-hand sides of (3.11) and (3.12) give the two components of the vectors 
which depend on lower-order solutions. The leading-order short-wave problem is 
homogeneous, with r$) = 9 ( l )  = g(l) = H(l) = Y(l) = 0. The lengthy right-hand- 
side expressions of the second-order problem, t$2), F(2), Y(2), Z(2) and Y(2), have been 
derived by the symbolic computation program MACSYMA, but are not given here. 

4. Evolution equations for the short waves 

The leading-order sum of the short waves is given by 
Let us begin with three trains of short waves with amplitudes A, for n = 1,2,3. 

(4 .1~)  
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FIGURE 1. Geometry 
wave k,. The angle 
shortest one. 

/ k 2  
..................... Ju12 

of a resonating triad. The angle v, is between the long wave K and the short 
1.412 is between the short waves kl  and k2. The short wave k3 is always the 

. 3  

(4 . lb)  
n= 1 

The wavenumber vector of the nth wave is k, = (ka,fl,kb,n) with k, = lk,l, while the 
phase is 0, = k,.u-o,t. Each amplitude An(u1,cl , t l )  depends on the slow coordinates 
only. Upon substitution of (4.1) into the leading-order equations (3.10)-(3.12), we get 
the dispersion relation for each short wave from the first-harmonic problem 

0: = gk, + yk:. (4.2) 

Note that Doppler's effect is not apparent in the Lagrangian dispersion relation. This 
is because the Lagrangian representation describes the short waves relative to fluid 
particles that move with the long wave. The short waves are hence described in an 
accelerated reference system such that they do not appear to be advected by the 
long wave. By transformation to a stationary Eulerian coordinate system, it can be 
shown that the Lagrangian dispersion relation (4.2) contains implicitly the anticipated 
Doppler shift due to the long wave. 

The Stokes drift due to the short waves ( X ( ~ * ~ ) , Z ( ' , ~ ) )  can be solved from the zeroth- 
harmonic problem, but is not needed here. 

The evolution equations for three resonant short waves are found at the second 
order. First the resonance conditions must be satisfied 

where each individual wave satisfies the dispersion relation (4.2). 
Figure 1 shows a typical geometry of a resonating triad, with wavenumber vectors 

kl, k2 and k3. The angle between vectors kl and k2 is denoted by 1.412, as indicated 
in the figure. This angle is always less than 90" (see footnote in McGoldrick 1965, p. 
309). We therefore denote k3 the shortest wave, and kl and k2 the two longer waves. 

The second-order solution is assumed to be of the form 

( 4 . 4 ~ )  

(4.4b) 

The zeroth harmonics (d2s0), ~ ( ~ 3 ~ ) )  are corrections to the Stokes drift, while (xL2*l), zL2.')) 
and (x!,~,~), zi2p2)) are the slowly varying amplitudes of the first and second harmonics, 
each of which depends on the scales ( u ~ , c , c I , ~ ~ ) .  We only need to consider the 
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first-harmonic displacements. The problem then becomes 

K. Trulsen and C. C. Mei 

with surface boundary conditions 

(4.7) 
By using MACSYMA, the lengthy expressions En, F,, G,, H ,  and I ,  have been 
obtained, but are not reproduced here. The above inhomogeneous differential system 
possesses non-trivial homogeneous solutions and must be subjected to the following 
solvability condition for each n :  

(2.1) - (21) = H (2.1) - (2.1) = 1, at = 0. 
Zn Xn n, Zn Y n  

0 

e k n c ( k ~ E n  - k:,"G, - kj-$Fn) dc = k,',,Hn + k&1, for n = 1,2,3. (4.8) 

As results of solvability, the evolution equations for the envelopes of the three 
resonating short waves riding on the long wave are obtained: 

L 

(4.9a) 

(4.9b) 

(4.94 

aA1 
- + cg,l V,,A1 + $]Al cos 4 + iaIAiA3 = 0, 
at1 
JA2 + cg,2 V,,& + iS2-42 cos 4 + ia2AYA3 = 0, 

aA3 
- + cg,3 V,,A3 + &A3 cos 4 + ia3AlA2 = 0. 
at1 

Here, cg,, is the group velocity 

(4.10) 

and V,, = (a/aal, a/abl). The coefficients for nonlinear interaction between short 
waves are 

kn 
a n  

a, = -a, n = 1,2,3, (4.1 1) 

where 

16klk~k3a = g (k3 - k2 - kl)(k3 - kz + k d k 3  + k2 - kl)(k3 + k2 + kl) 
+ Y { @ I +  k2 + k3I2 [k:(kl - k2 - k3) + kick2 - ki - k3) + k,)(k3 - kl - kz)] 

+ 4k1kzk3 [kf(k2 + k3) + ki(kl + k3) + k i (k l+  k ~ ) ]  } . (4.12) 

Our nonlinear coefficients are equal to those of McGoldrick (1965) (after correcting 
a typographical error), Simmons (1969) and Case & Chiu (1977), all derived in the 
Eulerian frame. 

The long-wave phase is 

4 = Ka2 - SZtl + arg B, (4.13) 
and the long-wave/short-wave interaction coefficients are 

3 ~ 4 K  -2knR2 cos 2 u, - - n 2 k n }  IBI 
f i n = {  20, 20" 

(4.14a) 
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FIGURE 2. The long-wave/short-wave interaction coefficient &/KB as a function of the angle v,,/n 
and the wavenumber k, /k ' .  The zero crossings are indicated by thick contour lines. 

= KIBI- k (3yk:cos2v,, -gsin2u,). 
20 ,  

(4.14b) 

Here, the angle between the long and the short wavenumber vectors K and k, is 
denoted by v, (see figure 1). 

Physically, the first term in (4.14~) is due to the long-wave-induced horizontal 
acceleration of the Lagrangian coordinates. This term would be absent in a stationary 
Eulerian description (e.g. Grimshaw 1988), but would be present in a horizontally 
accelerated system such that the short waves appear to propagate in a stationary 
medium. The presence of this interaction is therefore associated with the fact that 
the Lagrangian dispersion relation for the short waves does not explicitly show a 
Doppler shift. 

The last term in (4.14~) accounts for the vertical acceleration of the long-wave 
surface, and gives a modification to the effective gravitational acceleration felt by 
the short waves as they ride on top of the long wave. In some works on long- 
wave/short-wave interaction (e.g. Grimshaw 1988) this modification is accounted for 
in the dispersion relation for the short wave, and does not appear as part of the 
interaction coefficient between the long and the short waves. 

It is important to note that under the assumed scale ratios, the Lagrangian spatial 
gradients involve a1 only, but not u2. Within the domain defined by O(t1) = 1 and 
O(a l )  = 1, the spatial dependence of the long wave is only of parametric significance; 
only the time dependence matters. Thus the direct effect of the long wave is that of 
a time-periodic, but spatially uniform flow. 

Each of the coefficients bn is strictly positive if the short and the long waves are 
collinear, and strictly negative if they are orthogonal. A typical fin vanishes for some 
intermediate angle of incidence ij,, independent of the long wave, 

3Y k,2 tan2 ij, = -. 
g 

(4.15) 

Figure 2 shows the variation of P J K B  as a function of the short-wave wavenumber 
k,/k' and the angle u,, between the short wave and the long wave. The zero crossings 
of Pn are plotted as thick contour curves on the surface. 

We remark that in the absence of nonlinear interactions, our coefficient f i n  can only 
affect the phase and not the amplitude of a single linear short wave. In a resonating 
triad, however, the phases of any two waves will affect the amplitude of the third 
wave through the nonlinear interaction terms. Our long-wave/short-wave interaction 
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coefficients are therefore sufficient to describe both amplitude and phase modulation 
of the waves in a triad. 

Because the interaction coefficients f i n  are multiplied by the imaginary unit, the 
long wave cannot affect the total energy or linear momentum of the resonating short 
waves. Exchange of energy, momentum and action takes place only among the short 
waves, and not between the short waves and the long wave. 

5. Dynamical system for time evolution 
The system of partial differential equations (4.9) is difficult to analyse. We shall 

restrict our consideration to the special case where the evolution is uniform in the 
spatial modulation coordinates ul. Since the particle displacement is dominated by 
the long-wave motion, the coordinate u = X-e-lx-1 +O(e) is essentially drifting with 
fluid particles moved by the long wave. Thus V,, = 0 means that in this accelerated 
coordinate system, the short waves are not modulated in space. 

However, we shall allow for a small detuning from resonance. Detuning can be 
considered as a special type of slow space modulation. Let (k , , ,o , )  describe the short 
waves in perfect resonance, 

(5.la, b, c )  kl + k2 - k3 = 0, m i +  0 2  - 0 3  = 0, 0, = o ( k , ) ,  
while kk describes the detuned short-wavenumber vectors 

kk = k ,  + €8,. (5.2) 
Detuning can be expressed as envelope modulation by the following substitution: 

, n = 1,2,3, (5.3) 
where the short-wave field (A,) is uniform with respect to uI. For consistency, it 
is then necessary to assume that the detuned wavenumbers satisfy the resonance 
condition ( 5 . 1 ~ )  exactly, hence 

81 + 82 - 83 = 0. (5.4) 

t = -4 = - (Ka 2 - Qtl + arg B ) ,  (5.5) 

A - A ei&.ul 
f l -  fl 

In the following, it is convenient to employ the normalized variables 

The evolution equations then become 

(5.7a) 

(5.7b) 

dA‘, a‘ 
dt 2 
-- - -i-AiAi - $;A; cost - iA;A;. (5.7c) 

We now introduce polar coordinates A; = I,”’eien where I ,  2 0. In physical 
variables, I ,  = (ofl/k,)lA,1* is proportional to the wave action of the nth short wave. 
After separating the real and imaginary parts, we get a system of six real equations: 
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/ 

FIGURE 3. Intersection between two planes. The axes represent the wave actions of individual short 
waves. The action conservation laws are indicated as planes. The exchange of action between 
the three resonating waves must happen along the line of intersection. The difference between the 
actions of the longer waves is indicated by j.. 

(5.9b) 

(5.9c) 

The dimension of this dynamical system can be reduced from six to four by using 
the conserved quantities I1 + I 3  and I 2  + 13. Let 

el + e2 - e3 (;) = (~jIw%T8,,) and 6) = (2;;) 9 (5.10) 

where J is proportional to the wave action of the shortest wave. The new equations 
for J and y are 

(5.1 la) d J  
- = a' [J (J ,  - J ) ( J ~  - J ) ] ' / ~  sin y, 
dt 

(5.1 lb) _ -  -3J2 + w 1 +  J 2 ) J  - 5152 cos + A + cos t* dw - -a' 
dt 2 [J(J1 - J ) ( J z  - 

The phase angles el and O2 are decoupled from these, and can be found from (5.9b) 
and (5.9~). Thus we have in fact reduced the original set of six real equations to a 
dynamical system for two variables J and y. 

If 11, 12 and I 3  are used to form a rectilinear coordinate system, the conserved 
quantities J1 and J2 define two planes. The line of intersection between the two 
planes defines the range of J .  Since I, 2 0, only the segment extending from J = 0 
to J = rnin(J1,Jz) is physically meaningful, as sketched in figure 3. All exchange 
of action between the short waves is confined to this line segment. The line can be 
parameterized by 0 < j < 1 where 

J = J,(1 - J )  and J ,  = min{J1,J2}. (5.12) 

Hence j = 1 corresponds to I 3  = 0, j = 0 corresponds to the maximum I3,  and (1 - j) 
is a measure of the action of the shortest wave. 
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lo E q2 = 30" 

.o 

FIGURE 4. The effective long-wave/short-wave interaction coefficient /l/KJBI as a function of the 
angle of incidence v l / n  and the wavenumber kl /k '  in the range (0.1, 5.0) for two selected angles 
U ~ Z  = 30" and u12 = 70". The zero crossings are indicated by thick contour lines. 

Let us introduce the parameters representing two conserved quantities : 

(5.13) 

The parameter j. measures the difference between the maximum attainable wave 
actions of the two longer waves, see figure 3. The parameter r is proportional to the 
maximum amplitude attainable by the shortest wave. 

In figure 4 we show contour plots for the coefficient B as a function of the 
wavenumber kl and the angle u1 for u12 = 30" and u12 = 70". In general, when the 
angle u 1 2  between the resonating waves is small, B is insensitive to variations in the 
angle of incidence of the long wave ul.  When the angle between the resonating waves 
is large, /3 varies significantly with the long-wave angle of incidence. If u12 > 44" 
(approximately), it is possible to have f l  = 0 while the interaction coefficients PI, 8 2 ,  j?3 

are individually non-zero. The zero crossings of B are plotted as thick contour curves 
on the surface. When /3 vanishes, the influence of the long wave is not dynamically 
significant for the triad at this order, and will only give a trivial phase shift. 

In terms of j and y, the dynamical system becomes 

(5.14a) 

(5.14b) dy, 3j2 - 2 j  + 2j .  j - j. aH 
= r  cosy ,+d+pcos t  = --, - 

dt 2 [( 1 - j )  j ( j  + j .  )I ' j 2  ?I 
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where H is the time-dependent Hamiltonian defined by 

H ( j ,  y ; t) = r [( 1 - j ) j ( j  + j . ) ]  ' I 2  cos y - (A + /? cos t ) j .  (5.15) 

In the special case of j .  = 0, the equations (5.14) can be substantially simplified. This 
occurs when the two longer waves (wavenumbers kl and k2) have the same wave 
action. A special case is Wilton's ripples, for which the two longer waves are identical 
(kl = k2). 

We remark that laboratory experiments in the literature fall into two categories. 
They either consider collinear Wilton's ripples (e.g. McGoldrick 1970; Henderson & 
Hammack 1987) or they correspond to the initial condition that only the shortest 
wave has finite amplitude, while the two longer waves start out with infinitesimal 
amplitudes (e.g. Banerjee & Korpel 1982; Henderson & Hammack 1987; Perlin et al. 
1990). Hence all of these experiments correspond to j .  = 0. 

6. Analytical solution without the long wave 
In the absence of the long wave ( p  = 0), the temporal solution of the conservative 

three-wave equations is well known (see Craik 1985). In order to facilitate the 
subsequent analysis of the effect of the long wave, we first summarize the known 
analytical solution, and illustrate properties of the phase portrait and the bifurcations 
that may occur due to detuning. In particular we point out that the bifurcation 
criterion found previously for certain special triad configurations (Chen & Saffman 
1979; Reeder & Shinbrot 1981; Ma 1982) can be extended to an arbitrary resonating 
triad as long as the wave actions of the two longer waves are equal. 

The variable y can be eliminated from the system (5.14) by using the Hamiltonian 
(5.15). The resulting equation for j is 

d j  - = +r [( 1 - j ) j ( j  + j . )  - ( H  + ~ l j ) ~ ]  dt = +r [(hz - j ) ( j  - h l ) ( j  - ho)I1I2, (6.1) 

where h,,, hl and h2 are the zeros of the radicand. We let hC, < 0 < hl < j < h2 < 1, 
such that hl and h2 are the lower and upper bounds for j .  

If we take the initial condition j (0)  = h2, the negative sign must be taken in (6.1), 
and the solution is 

112 

j ( t )  = h2 - (h2 - hl )  sn2($rt(h2 - hC,)'/2,m), 
m = (G) . (6.2) 

Here sn is a Jacobi elliptic function, and the parameter m is defined according to 
Gradshteyn & Ryzhik (1980). The period 9 of modulational oscillation is given by 
the complete elliptic integral of the first kind, 

These results are well known. 
The parameter m is in the range 0 < m < 1. In the limit m = 0, we have hl = h2 

and the solution reduces to a fixed point (a centre) at j = jc and y = yc. Here yc is 
either 0 or and jc  is the solution of 

(6.4) 
24  

(3j: - 2jc + 2j*jc - j . )  cos yc = -7 [( 1 - jc)jc(jc + j . ) ]  1/2 . 
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FIGURE 5. Bifurcation diagram for the location jc  of centres when j .  = 0 and -3 < A / r  < 3. jc  = 0 
is a fixed point for all A / r .  The generalized bifurcation of Chen & Saffman (1979) is seen at jc  = 0 
and A / r  = +l. Solid line wc = 0, dashed line tpE = n. 

Of particular interest is the special case when j .  = 0; the solution is then 

6 - 2 ( ~ I / r ) ~  & 2 ( ( ~ l / r ) ~  + 3 ( ~ I / r ) ~ ) ' / ~  
9 Y (6.5) jc  = 

see figure 5. By linearization of (5.14) about the fixed point ( jc ,  yc), we can verify that 
it is a centre with the frequency 

in accordance with (6.3) for m = 0. 
For further insight into the behaviour in terms of the variables j and ly, it is 

convenient to regard these as coordinates on a sphere, with j measuring the latitude, 
and y the longitude. Thus j = 0 (only the shortest wave is present) corresponds to 
the south pole and j = 1 (the shortest wave is absent) the north pole. We perform 
local analyses at the poles to understand the behaviour there. 

Near the south pole j = 0, i.e. when the shortest wave k3 is dominating over the 
other two waves in the triad, we introduce new coordinates 

*1 /2  *1 /2  x =  J cosy, y =  J siny 

in (5.14). When j .  > 0, we get to the zeroth order in x and y, 

dx 
- = 0, 
dt 

dy rj!I2 
dt 2 -  
- = -- 

Hence the south pole has a finite flow in the negative y-direchn. For j .  = 0, the 
above approximation is inadequate, and it is more convenient to return to the polar 
representation. To the zeroth order in j ' l2 ,  we have 

dj1/2 9 = -rcos3y + A .  
dt 

- = 0, 
dt 

The south pole is now a fixed point. When IA/rl > 1, it is a centre. When IA/rl < 1, 
it resembles a saddle point, with invariant stable and unstable eigenspaces along the 
two lines (w constant) determined by 

c0s3 y = A / r .  (6.10) 

Because there is only one stable and one unstable eigendirection, we call this fixed 
point a degenerate saddle. 
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F~GURE 6. Phase portraits ( j , ~ )  for the autonomous system. (a) j .  = 0, A / r  = 0; (b)  j. = 0, 
A / r  = 0.5; ( c )  j .  = 0, A / r  = 1.5; ( d )  j .  = 1, A / r  = 1.5. The homoclinic trajectory is drawn as a 
thick line in (a) and (b). 

By a similar analysis it can be shown that the north pole j = 1 (i.e. the shortest 

The stable and unstable eigendirections of the degenerate saddle are part of a 
wave is not present) is never a fixed point. 

homoclinic trajectory. This occurs in the limit m = 1, and the solution reduces to 

rt  
j = (1 - ( A  /r)’)  sech’ - . 

2 
(6.11) 

This happens only when j .  = 0 and 

IA/rl < 1. (6.12) 

Chen & Saffman (1979) discussed the bifurcations of steady solutions for collinear 
Wilton’s ripples. They gave the criterion that if the height (h )  of a steady second- 
harmonic wave (wavenumber 2k) exceeds 

(6.13) 

then the second-harmonic wave can bifurcate into a steady combination wave of the 
first and second harmonics. To the leading order in detuning, their condition is a 
special limit of the bifurcation condition (6.12), in the special case of Wilton’s ripples. 
The bifurcation can be seen in figure 5 as the branching of the centre curve (6.5) away 
from j ,  = 0. At the branch point, j ,  = 0 changes from being a centre to a saddle. 
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FIGURE 7. Frequency of envelope oscillation, 2x / rY- ,  of the autonomous system. Along the 
horizontal axis, j first increases from 0 to 1 corresponding to w = 0, then decreases from 1 to 0 
corresponding to w = x.  (a)  A l r  = 0, (b) A / r  = 0.5, (c )  A l r  = 1, ( d )  A l r  = 1.5 

To see that (6.12) reduces to (6.13) for Wilton's ripples, we drop the ordering 
parameter e, and set 

Our condition (6.12) then becomes 

which is the same as (6.13) within the order of the detuning O(&/kl )  = O(e). 
We have now shown that this bifurcation can occur for any resonating triad, as 

long as j .  = 0, i.e. whenever the wave actions of the two longer waves are equal. 
The existence of the degenerate saddle point, which is predicted by the bifurcation 
condition, is found to have an important consequence for the onset of chaotic 
behaviour in the presence of a long wave. 
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The possible phase portraits are simply contours of constant Hamiltonian, some 
of which are presented in figure 6. The two important parameters that determine 
the qualitative phase-space behaviour are j .  and lA/rl. When j .  > 0, there are only 
two centres, at y = 0 and y = a, and with 0 c j ,  c 1. When j .  = 0 there are 
two centres, and if ( A / r (  < 1 there is an additional degenerate saddle point. The 
homoclinic trajectory is highlighted as a thick curve in figure 6. 

In figure 7 the frequency of the closed orbits, 271/19-, is plotted as a function of 
the value of j where the orbits cross y = 0 or y = n, for selected values of j. and 
A / r .  The value along the abscissa ( j )  first increases from 0 to 1 corresponding to 
y = 0, and then decreases from 1 back to 0 corresponding to y = 7c. While the 
homoclinic orbit is non-periodic with zero frequency, large values of j ,  causes all 
orbits to have approximately the same frequency. This has an important consequence 
in our later analysis of the effect of the long wave: When there is a broad range 
of natural oscillation frequencies, the triad can be resonantly exited more easily by 
the long wave. The broadest range of natural frequencies happens for j .  = 0 and 
moderate detuning. 

7. Effects of a weak long wave near the centre 
We now come to the main objective of this paper, which is the effect of the long wave 

on the triad. In this section we derive approximate analytical results by assuming that 
the long-wave forcing coefficient f i  is sufficiently small that a perturbation approach 
can be employed. Numerical confirmation by integration of the original evolution 
equations is presented afterwards. In the next section we consider stronger long-wave 
disturbance numerically. 

Corresponding to the closed orbits, the typical behaviour of triad resonance is 
the periodic modulation of the envelopes, found analytically in 96. If the period 
of the long wave is on the same timescale, the natural modulational oscillations 
of the envelope may then be resonated. We denote this modulational resonance, to 
distinguish it from the basic wave resonance between the three short waves. 

A convenient way to present the behaviour of the disturbed triad, is to use the 
Poincarb map (or first return map), for which the state of the triad is periodically 
sampled with a time interval equal to the period of the long-wave oscillation. Since 
the long-wave frequency has been normalized to unity, this corresponds to sampling 
at times t = 27rn for n = 1,2,3,. . .. 

We first carry out a perturbation analysis for the case of no modulational reso- 
nance, and then consider two cases of modulational resonances. Specifically, a small 
parameter p 4 1 will be used to characterize the envelope modulation, and will be 
distinguished from r 4 1 in the original perturbation analysis. We use the normalized 
time coordinate t as defined by ( 5 3 ,  to be the basic time for modulation of the 
envelope. Within the basic time range of t = O( l), we allow a cascade of slow times 
pt, p2t,. . .. In this section, indices always refer to the order in terms of p. 

The starting equations are (5.14). It suffices to consider only perturbations around 
the centre at y, = 0. By the symmetry of the governing equations, the solution 
near yc = 7r can be obtained by translating y + a - y and changing the signs of 
f i  and A. For simplicity, we consider only A = 0, with extensions for d # 0 being 
straightforward. 
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7.1. Non-resonant long wave 
Let us assume that the long wave is weak such that p = pj31. We also assume a slow 
modulational time 7 = p2t. Solutions will be sought in the perturbation expansions 

j = jc  + pj1+ p2 j 2  + p3j3 + * e ,  

W = WC + PWi + P2Y2 +p3W3 + - - ' ,  
where all j,,, y,, depend on the fast and the slow times. 

We choose to express j .  in terms of j,, according to (6.4), i.e. 

2jc - 3j,2 
2jC - 1 ' 

j .  = 

In order to simplify the equations, we introduce the notation 

a = (2jr - 1)'12, Y E (3j: - 3jr + 11~'~. 

At the leading order O(p), we get 

(7 .1~)  
(7.lb) 

(7.44 

(7.4b) 

These are the equations for a linear oscillator with a natural frequency I given by 
(6.6), but forced at the frequency 1. The first-order response must therefore be of the 
form 

j = pleLlt + qleir + c.c., 
~1 = rleiAr + sleir + C.C. 

(7.5~) 
(7.56) 

The complex amplitudes of the free oscillation, p1 and rl, are so far arbitrary, while 
the amplitudes of the forced oscillation, 41 and SI, are constants. Their detailed forms 
are not of particular interest, and are omitted here. 

Owing to nonlinear interactions and the long wave, the following harmonics will 
be forced at the first three orders of p :  

(7.6) 1 WC) 1 
O(p2) 
0 ( ~ 3 )  3 4  2 ~ + 1 ,  21-1, 1 + 2 ,  2-2, A, 3, 1. 

2 5  I + 1, I - 1, 2, 0 

In this subsection we assume that all of the other harmonics listed above are different 
from I. We must then allow p l  to vary with t in order to avoid secular forcing of 
frequency I at O(p3). 

At the second order in p, we have 

The solution is of the form 

(7.7~) 

(7.7b) 
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The solutions of the coefficients are omitted here for brevity. 
At the third order, we have 

The natural oscillation frequency is now forced through the nonlinear terms on the 
right-hand-side. Solvability for p31 leads to the following condition for p1:  

(7.10) 

where CI and C2 are functions of j ,  and 1. 
The evolution equation (7.10) is readily solved, subject to the initial condition 

= pe-i(c~IPt2+c2)7 (7.11) 

Pl(0) = p ,  

The expansion for j becomes 

j = jc + 2pRe {p1(p2t)e"' + 41e") + O(p2), (7.12) 

with a similar expansion for v. Physically, the slow modulation due to (7.10) gives a 
small correction to the natural oscillation frequency. The resulting modulation of the 
wave amplitude is simply a superposition of discrete simple harmonic oscillations. 

The perturbation results have been confirmed with numerical integrations of the 
full evolution equations. As an example, let us fix r = 0.7, j .  = 2., /? = 0.1, A = 0, and 
take the initial condition (j, w) = (0.6,O). Figure 8 shows the phase-plane trajectory 
for a duration of 50. Superimposed as a thick curve is the Poincarb (first return) 
map, as described above. Figure 9 shows 10 log,, of the magnitude of the Fourier 
transform of j ( t ) .  An FFT of size 8192 was used with a time step of 0.105. The 
frequencies and amplitudes of the first and second harmonics, as predicted by this 
perturbation theory, are indicated by asterisks. The asterisks are plotted with the 
corrected frequency, which takes into account the slow modulation predicted by (7.10). 
The approximate analysis gives an accurate prediction of the dominant frequencies 
and their amplitudes. The approximate analysis works quite well even when the 
amplitude lj - jcl is not small. 

From the list in (7.6) it can be seen that modulational resonance may occur at first 
order in p if 1 = 1, at second order if 1 is 4 or 2, and at third order if 1 is $ or 3. In 
principle there may be modulational resonance for 1 equal to any rational number 
for some order of p. In the next two subsections, we consider in some detail the cases 
3, = 1 and 1 = i. All the other resonant cases up to the third order have been worked 
out, after lengthy but straightforward analysis. They are not repeated here. 

7.2. First-order synchronous modulational resonance, 1 = 1 
For synchronous modulational resonance we set 

3 , = 1 + f ,  (7.13) 
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91 7c 
F~GURE 8. Numerically computed trajectory ( j , ~ )  (thin line) for B = 0.1, r = 0.7, j. = 2 and A = 0. 
The system evolved from the initial condition ( j , ~ )  = (0.6,O) until time t = 50. The Poincare map, 
sampling every long-wave period t = 2xn,  is indicated by the thick curve. 

where f denotes detuning of the natural frequency from the forcing frequency. We 
choose to express r in terms o f f  and j , ,  see (6.6) and (7.3): 

w 
r = (1 +f)-. 

Y 
(7.14) 

In order to balance slow growth and nonlinearity, let us assume a weak long wave, 

P = P3P3, f = P2f2, T = P 2 t. (7.15) 

Perturbation expansions of the form (7.1) with yc = 0 are assumed, where all jn and 
yn depend on the fast and the slow time. 

small detuning and slow time according to the following scales: 

At leading order, we get 

(7.16a, b )  

This is an oscillator with natural frequency 1. We therefore assume the response 

i Y  

( jc  - l)jr 
j i  = pleif + c.c., W1 = pleit + C.C. 

The complex amplitudes are functions of the slow time T. 
At the second order, we have 

(7.17) 

(7.18a) 

(7.18 b)  

The second-order system is not forced at the natural frequency. We assume the 
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FIGURE 9. Fourier spectrum of j ( t )  for the trajectory shown in the previous figure. The continuous 
curve is the FFT computed with 8192 samples and time step 0.105. The asterisks are the analytically 
computed Fourier amplitudes according to our perturbation analysis, with the frequencies adjusted 
to compensate for slow time modulation. The natural modulation Frequency is 1 and the forcing 
frequency due todhe long wave is unity (1). The expressions for the amplitudes are omitted in the 
text. 

solution 

j 2  = p m  + p21eif + p22e2if + c.c., 
w 2  = r20 + r21eit + r22eZit + C.C. 

(7.19~) 
(7.19b) 

Again, the complex amplitudes are functions of z. 
At the third order, we have 

This problem is forced at its natural frequency. Hence we impose a solvability 
condition, to avoid secular growth of the first-harmonic response. This leads to the 
following slow evolution equation for the complex amplitude p1: 

where the real and non-negative coefficients A1 and A2 are 

15(2jc - 1)2 
4 9 4  ' 

(1 - jc)jc 
4 9  * 

A2 = A1 = 

(7.21) 

(7.22) 

The complex evolution equation can be written as two coupled real equations, by 
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introducing p1 = x + iy : 
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where h is the Hamiltonian 

h ( x , y )  = i A l ( X 2  + y2)2 - if2(x2 + y 2 )  - A2B3X. (7.24) 

From the leading-order solution (7.17), it is seen that the Poincark map of the 

(7.25) 

Hence the trajectories of ( x , y )  are easily plotted as the level curves of h. 

original ( j ,  y)-system is 

j(2lrn) = j ,  + 2pxn + 0(p2) ,  

where 

(7.26) 

(7.27) 

Hence the invariant manifolds of the Poincark map of ( j , ~ )  are qualitatively sim- 
ilar to and approximated by the level curves of h ( x , y )  after an appropriate linear 
transformation. 

The bifurcation set of the system (7.23), written compactly as 

= F ( x , y , j c , f , B ) ,  Y = G(x,y,jc,f,B), (7.28) 

is the set of parameter values ( jc ,  f , P )  where the system changes its qualitative 
behaviour. The bifurcation set is given as the solution of the three equations 

-- - 0. a(F ,  G) F = O ,  G = O ,  
Y )  

The solution is readily found to be the union of the two surfaces 

s1 : f 2  = (+%w,2) 9 

s2 : p, =o, f 2  20. 

(7.29) 

(7.30) 

The two surfaces divide the parametric space into three regions, as shown in figure 
10. In each region we show typical phase portraits for ( x , y ) ,  which are qualitatively 
similar to the Poincark map of ( j , y ) .  In region I the map has one centre. In regions 
I1 and I11 the map has two centres and one saddle point. Two homoclinic manifolds 
connect back to the saddle point. The phase portraits in regions I1 and 111 are mirror 
reflections of each other, corresponding to the symmetries of the Hamiltonian h(x,y) .  

7.3. Second-order subharmonic modulational resonance, 1 = 1 
We set 

and assume the following scales: 
n = i + f ,  (7.31) 

p = lJ2p2, f = p2f2, z = p 2 t. (7.32) 

The leading-order natural response is assumed to be 

(7.33) 
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FIGURE 10. Bifurcation diagram for synchronous modulational resonance. The bifurcation surfaces 
are shown in the parameter space of jc,  f 2  and f i3 .  Typical phase portraits are shown in each region. 
In all portraits the horizontal and vertical axes are x and y,  respectively. Note the relative rotation 
of portraits in regions I1 and 111. 

Removal of secular growth at O(p3) now gives 

dP1J12 + ~1IP1,1/2I2P1,1/2 - if2P1,1/2 - L42P2&/2 = 0, (7.34) 
d.r 

where the real and non-negative coefficients A1 and A2 are 

(7.35) 

The complex evolution equation can be written as two coupled real equations 

h(x,y) = ;Al(x2 + y2)2 - $f2(x2 + y2) - iA2/32(y2 - x2). (7.36) 

The evolution equation (7.34) and the associated Hamiltonian (7.36) are now quali- 
tatively different from (7.21) and (7.24), respectively. 

It is now natural to redefine the Poincari. map, by choosing the sampling time equal 
to twice the period of the long wave, t = 47rn for n = 1,2,3,. . .. The PoincarC (second 
return) map is now given by 

(7.37~) 

similar to (7.23) by introducing p1,1/2 = x + iy. The Hamiltonian is now 

j(47rn) = j e  + 2P2n + 0(P2)7 

where 

(7.37b) 

(7.38) 

The manifolds of the PoincarC (second return) map for ( j , ~ )  are thus approximated 
by the level curves of h(x,y) after an appropriate linear transformation. 
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I1 1 
IV 

RGURE 11. Bifurcation diagram for subharmonic f modulational resonance. The bifurcation 
surfaces are shown in the parameter space of j,, fi and f i z .  Typical phase portraits are shown in 
each region. In all portraits the horizontal and vertical axes are x and y, respectively. Note the 
relative rotation of portraits in regions I1 and 111 and in regions IV and V. 

The bifurcation set is the union of the three surfaces 

sI : f2 = --421P21, 

s2 : f 2  = - 4 2 l P 2 l ,  
s3 : p 2  = 0, f2 2 0. 

(7.39) 

These three surfaces divide the parametric space into five regions, see figure 11. In 
each region we show typical phase portraits for ( x , y ) ,  which are identical to the level 
curves of h ( x , y ) ,  and which are qualitatively similar to the PoincarC (second return) 
map for ( j , ~ ) .  We notice that the bifurcation surfaces are symmetric with respect to 
changing the sign of 8 2 ,  while the phase portraits for positive and negative p2 can be 
obtained from each other by a 90" rotation. In region I the map has one centre. In 
regions I1 and I11 the map has two centres and one saddle point, with two homoclinic 
manifolds. In regions IV and V the map has three centres, two saddle points and four 
heteroclinic manifolds. 

7.4. Other resonances 
A similar analysis of the superharmonic resonances 3, = 2 and A = 3 reveals that 
they give a behaviour of the PoincarC map rather similar to the synchronous case 
3, = 1. The subharmonic resonance A = is qualitatively different, in which case the 
parameter space is divided up into five regions, and one can have characteristic phase 
portraits involving three saddle points and four centres. 

We have so far only considered the case of zero detuning A = 0. When detuning and 
weak forcing are both present, the resulting modulational resonances and bifurcations 
can be anticipated with the help of figures 6 and 7. In particular, figure 12 shows 
a numerically computed Poincark map for p = 0.1, r = 0.7, j .  = 0 and A = 0.7. 
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FIGURE 12. Poincark map for jl = 0.1, r = 0.7, j .  = 0 and A = 0.7, showing the characteristic mani- 
folds of synchronous resonance (a), subharmonic f resonance (b) and subharmonic resonance (c). 

The corresponding frequencies of closed orbits of the unforced system are shown in 
figure 7(c). The unforced system has no saddle points or homoclinic loops. It has 
two centres: the first at j = 0 with frequency 0 and the second at ( j  = ;,y = n) 
with frequency 1 = 1.4(3)’/* = 1.143, according to (6.5) and (6.6). Since the unforced 
modulational oscillation frequency decreases monotonically from 1 = 1.143 to 0 from 
the centre at j = $ to j = 0, we expect the occurrence of modulational resonances 
with frequencies 1, i, etc. at some intermediate locations when the forcing is weak. 
In figure 12 this can indeed be observed. The first centre of the unforced system can 
be traced at j = 0, while the second one is at w = x and j = 0.948. Between these 
two centres (from north to south), we can see the resonant manifolds for synchronous 
resonance (a) ,  subharmonic resonance ( b )  and subharmonic resonance (c). 

In principle, there may be modulational resonance whenever the ratio between the 
oscillation frequency of natural modulations and the forcing frequency of the long 
wave is a rational number. A few resonances obtained by numerical integration 
are shown in figure 13, for parameter values = 0.1, r = 0.26, j. = 0 and d = 0. 
The unforced system now has a degenerate saddle point at j = 0 with a homoclinic 
trajectory at w = +n/2. There are two centres at j = f, w = 0 and w = n, with 
frequency L = 0.26, according to (6.4) and (6.6). Since the unforced modulational 
oscillation frequency decreases monotonically from 1 = 0.26 at the two centres to 
0 at the homoclinic trajectory, we expect the occurrence of various modulational 
resonances at some intermediate locations when the forcing is weak. In figure 13, 
we show the characteristic manifolds of four modulational resonances. Starting 
closest to the centres and going outward, we see a subharmonic resonance ( a )  
inside a subharmonic 4 resonance (b )  inside a subharmonic a resonance (c) inside a 
subharmonic resonance (d) .  These resonances are identified numerically as follows. 
We first locate any centre or saddle point of that resonance. Then we count how 
many iterations of the map are needed to get back to the same point. In doing so, we 
trace all the other centres or saddle points of the given resonant manifold as well. The 
plots showing the invariant manifolds of the saddle points have been generated by 
first finding the linear eigenspaces of each saddle point, and then taking a few initial 
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FIGURE 13. Poincarh map for B = 0.1, r = 0.26, j .  = 0 and A = 0, showing the characteristic 
manifolds of subharmonic f resonance (a), subharmonic resonance (b) ,  subharmonic a resonance 
(c) and subharmonic 4 resonance (d). 

conditions along these eigenspaces and iterating a few times forward and backward 
in time. 

8. Effects of a stronger long-wave disturbance 
Guided by the insight gained by the approximate analysis for weak long-wave 

disturbances, we have performed extensive numerical integration of the evolution 
equations. Because the reduced representation with j and IJJ is singular at the poles 
of the sphere, we integrate the full six-dimensional system (5.7), and then transform 
the results to j and IJJ for plotting. Presented below are the Poincari maps obtained 
by sampling the state of the triad every long-wave period t = 2nn for n = 1,2,3,. . .. 

We found in $6 that whenever j .  = 0 and (d/r( < 1, the unforced system has a 
homoclinic trajectory connecting the degenerate saddlepoint at j = 0 to itself. We can 
show by a Melnikov analysis that the homoclinic trajectory will tangle and give rise 
to a stochastic behaviour for any small disturbance by the long wave. This is to be 
expected since our model does not include non-conservative effects. Thus whenever 
the conditions j .  = 0 and IA/r( < 1 are satisfied, which is our generalization of the 
bifurcation condition of Chen & Saffman (1979), there are initial conditions that give 
rise to chaotic behaviour for an arbitrarily small long-wave disturbance. 

In $7 we found homoclinic and heteroclinic manifolds of the Poincark map, asso- 
ciated with modulational resonance. According to the analysis of 57, these manifolds 
should not tangle for a sufficiently weak long-wave disturbance. However, numerical 
computations show that these manifolds do tangle provided the long-wave distur- 
bance is sufficiently large. Chaotic behaviour due to modulational resonance tends 
therefore to occur at a higher threshold value of the long-wave disturbance. 

The Poincark maps in figures 14 and 15 illustrate the behaviour of the triad subject 
to successively stronger disturbances by the long wave. We fix j .  = 0, r = 0.55, d = 0 
and let /3 take the values 0.01, 0.1, 0.2, 1.2 and 2.0. 

The weakest long-wave disturbance, /3 = 0.01 (figure 14) is within the validity 
of the perturbation theory, although the detuning from modulational resonance is 
rather large. We can see the characteristic heteroclinic manifolds of a subharmonic 
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fi/n 
FIGURE 14. Poincare map for r = 0.55, j .  = 0, A = 0, /? = 0.01. We see subharmonic f 

modulational resonance (a) and subharmonic 4 modulational resonance (b). 
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RGURE 15. Poincare map for r = 0.55, j .  = 0, A = 0: (a) fl = 0.1, (b) B = 0.2. 
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RCURE 15. Poincark map for r = 0.55, j .  = 0, A = 0:  (c) /3 = 1.2, ( d )  /3 = 2.0. 

4 modulational resonance (a) ,  corresponding to regions IV and V in figure 11. On 
the outside, we see the manifolds of a subharmonic f modulational resonance (b), 
for which a perturbation theory has been worked out in the style of $7, but is not 
presented here for brevity. The disturbance by the long wave is sufficiently small 
that these heteroclinic manifolds do not tangle. The homoclinic trajectory of the 
autonomous system (see the thick curve in figure 6a) does tangle and gives rise to a 
stochastic layer, in accordance with the Melnikov analysis. 

When /l = 0.1 (figure 15a), the stochastic layer of the homoclinic trajectory of 
the autonomous system has grown in size to cover the area occupied by the subhar- 
rnonic resonant manifold. The subharmonic resonant heteroclinic manifolds are 
now tangling and forming their own stochastic layers, which are separate from the 
stochastic layer of the homoclinic trajectory. 

When /l = 0.2 (figure 15b), the subharmonic 4 tangle has joined with the tangle 
of the homoclinic trajectory of the autonomous system. Only small islands of phase 
space remain that are not covered by stochastic layers. 

In general, as the long-wave disturbance increases, the stochastic layers will grow in 
size, and will eventually cover the entire phase space. Numerical experience indicates 
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however that when the long-wave disturbance becomes much larger, the chaotic 
behaviour may recede by the shrinking and disappearance of the stochastic layers. 
This is illustrated in figure 15(c) for p = 1.2. Here we can see that the area of phase 
space covered with stochastic layers has diminished. 

In figure 15(d), = 2.0 is sufficiently large that the dynamical behaviour is non- 
chaotic throughout phase space. 

It is now clear that chaotic behaviour tends to develop first near the homoclinic 
trajectory of the autonomous system. The existence of such a trajectory is of course 
predicted by the bifurcation condition (6.12). For an increasingly strong long wave, 
chaos may then develop near the manifolds of modulational resonances. The greatest 
likelihood for modulational resonance to occur is when there is a wide range of 
natural modulational frequencies available. From figure 7, which shows the natural 
modulational frequencies, it is clear that a wide range is available when j .  is small 
and d / r  is of unit magnitude or smaller. In physical terms, this means that the wave 
actions of the two longer waves should be approximately equal, and the mismatch in 
the resonance condition should be small. Then chaotic behaviour of a triad is easily 
excited by a passing long wave. 

9. Conclusion 
In this paper we study theoretically the effect of a uniform long wave on a 

resonant triad of short gravity-capillary waves. To consider cases where the short- 
wave wavelengths are much smaller than the long-wave amplitude, we employ a 
Lagrangian formulation to simplify the description of the free surface. Without 
dissipation the equations governing the slow evolution of the wave envelope are 
derived for weakly nonlinear short waves on a gentle long wave. To the order of 
approximation dominated by quadratic interactions among the short waves, the long 
wave is shown to modify the evolution equation through terms with time-periodic 
coefficients. The interaction coefficients signifying the coupling between the short 
waves are found to be the same in both the Lagrangian and the Eulerian formulations. 
Important features of the nonlinear dynamics can therefore be expected to remain in 
either formulation. Detailed dynamics is then studied for the time evolution of short 
waves which are spatially uniform in a coordinate system moving with the long-wave 
flow. From the analytical solution without the long wave, bifurcations due to detuning 
have been examined. The bifurcation criterion of Chen & Saffman (1979) for collinear 
Wilton’s ripples is found to apply to triads with arbitrary wavenumber configurations 
whenever the two longer waves have the same wave action. The effect of the long 
wave is then studied analytically for a weak disturbance. Modulational resonance 
of the short-wave envelope is studied when the long-wave frequency is a rational 
multiple of the natural modulational frequency of the triad. Several bifurcations of 
the PoincarC map are found, and confirmed by direct numerical integration. Finally, 
by increasing the amplitude of the long wave, Hamiltonian chaos is found to begin 
in two situations. The first one is due to the tangling of the homoclinic trajectory 
that can exist for a triad that is not disturbed by the long wave. The second one is 
due to the tangling of the homoclinic and heteroclinic manifolds of the Poincarb map 
associated with modulational resonance of the triad when it is disturbed by the long 
wave. It is found that when the two longer gravity-capillary waves have nearly the 
same wave action, then chaos is likely to be excited by the long wave provided the 
detuning from triad resonance is not large. 

A number of theoretical questions remain, such as the concurrence of spatial and 
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temporal chaos, the effects of higher-order nonlinearity which may be important for 
longer time, the effect of damping and wind input, etc. More studies on these issues 
will help the understanding of the physical causes for randomness of the sea surface. 
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Appendix. The governing equations 

continuity condition requires that the following expression is independent of time : 
For this analysis it is sufficient to display linear and quadratic terms only. The 

(A 1) 
ax ay aZ ax ay ax ay ax aZ ay az ax a Z  ay aZ -+-+----+ ----- ---+--+--  
aa ab ac ab aa aa ab ac aa ac db aa dc ab ac' 

Irrotationality, x-component : 

a2y aZz ax B2y a2y ay ax a2y ay a2y 
scat abat ac aaat abat ac aa acat ab acat 

-- +- +--+ 

ax a2z ax a2z a2z az a Z  a Z z  

db aaat aa am abat ac ab acat 
--- +-- +------ -0. (A2) 

Irrotationality, y-component : 

a2x a2z a2x ax ax a2x a2X ay a2x ay 
acat aaat aaat ac aa acat acat ab abat ac +-- 

ay a2z ay a2z a2z a Z  aZ a2z 
i3b aaat aa abat daat ac aa acat 

+ +--- -0. (A3) 

Free surface condition, a-component : 

a2x az axa2X a y a 2 y  az a2z - + g - + - - + - - + - - + y  
at2 aa aa at2 aa at2 aa at2 

ay a3z a2xa2Z a2xa2z ax a3z ay a3z 
+2-- + 3-- + -- + 2-- +2-- 

ab daab2 da2 da2 ab2 aa2 db aa2ab aa da2ab 

a x a 3 Z  a3y aZ 
+2-- + -- 

aa da3 aaab2 ab 

Free surface condition, b-component : 
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ax a32 ay  a32 a2x aZz ax a32 a3y dz 

+2-- + 2--  +2--+2--+-- 
ab aaab2 aa aaab2 aaab aa2 da W a b  a d a b  ab 

These equations have been worked out with the help of the symbolic computation 
program MACSYMA. 
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